AUTOMATIC IN-FLIGHT REPAIR OF FPGA COSMIC RAY DAMAGE

Sarah THOMPSON, Alan MYCROFT

Computer Laboratory, University of Cambridge, William @aBuilding,
JJ Thomson Avenue, Cambridge, CB3 OFD, UK

Guillaume BRAT

Research Institute for Advanced Computer Science, NASA Research Center,
Mail Stop 269-2, Moffett Field, CA 94035-1000

Arnaud VENET

Kestrel Technology LLC, 3260 Hillview Avenue, Palo Alto, @804

ABSTRACT:

FPGAs are finding an increasing number of applications with\SA in deep space
probes, planetary rovers and manned vehicles. Like otheosidevices, FPGAs can be
damaged by high energy cosmic ray impacts, resulting in aeemt latch-up conditions
that manifest as ‘stuck-at’ faults. Traditionally, mulggpedundancy and voting logic have
been employed as a work-around, particularly for high bdlity, extreme environment
applications. However, reconfigurable FPGAs are beconmiageasingly common in flight
systems, offering a potentially valuable possibility forgroved levels of fault recovery —
after a fault is detected and localised within an FPGA, iessiible to reprogram the device,
in flight, with an alternative, equivalent, circuit that dosot depend upon the damaged
portion of the chip.

Designing such alternative chip layouts by hand is a valitbopthough costly in terms
of the man-hours of effort required; a fully automated alétive would be far preferable.
In this paper, a technique is presented that allows the atiomgeneration of FPGA con-
figurations for fault recovery purposes by means of nonsab8AT solver technology.

1 INTRODUCTION

Designing hardware capable of reliable operation in deegesjs far from trivial. The familiar, tried
and trusted design techniques employed by engineers vgpokirtonventional, ground-based electron-
ics are not sufficient to ensure reliability in the extremeiemmment of deep space. Radiation, extreme
temperatures, hard vacuum and many other challenges masidoessed whilst accommodating a re-
qguirement for extremely high reliability — deep space psofypically must operate for decades, with no
possibility of servicing by astronauts if anything goeslipavry.

Inherently radiation hard semiconductor devices do exigiugh they carry a very significant cost
penalty, as well as generally requiring more power in reforess performance in comparison with
commercially available off-the-shelf (COTS) devices. Arguon radiation hardening design approach
involves taking an existing COTS standard cell design, therthesising a new version where some or
all of the original gates and flip flops are replaced with mamaplex, internally redundant equivalents.

The widely used RAD6000 processor was created by replabmgtandard cells of the original IBM
RS/6000 design with hardened versions, resulting in a gemrewith greatly improved radiation hard-
ness with respect to the original. Such chips are more iadiatsistant than the COTS equivalent, but
are slower, require more power and are typically extremestlg ($100k per device is not unusual) due
to the need to amortise foundry set-up costs over a relgtamiall number of saleable devices. De-
signers operating within contemporary budgetary congsaiften therefore prefer to use COTS devices
where possible, reserving extremely expensive radiatéasd bomponents for critical subsystems only.
For example, a mission critical guidance system might bdampnted with radiation hardened chips,
but a less critical instrument package might use COTS comtsrinstead, achieving a significant cost,
mass and power saving as well as allowing higher clock rates.

1.1 FPGAS IN SPACE

The Apollo programme at it height consumed more than halfwbdd’s entire chip manufacturing
capacity, comprising many custom-built ASICs. Modern ggaaft, however, are designed within bud-
getary constrains that mean that full custom ASICs are faekpensive to be considered. Nevertheless,
mass limitations still mean that custom chips are necessary. Field progrdsfengate arrays (FPGAS)
offer a good compromise; though less efficient than fullkeosASICs in terms of density and power
consumption, they nevertheless offer a means by which custops can be incorporated into designs
without incurring the huge (approximately US$2 million pieration) fabrication costs of full-custom
devices. FPGAs typically contain a large array of genergbpse logic that only ‘becomes’ the target
circuit after an appropriate configuration bit stream isoapled. In some FPGA families, particularly
those manufactured by Actel, programming is carried oueandy, after manufacture but typically be-
fore the chip is incorporated into a board-level system.eDtamilies, particularly those manufactured
by Xilinx and Altera, hold their bit stream in static RAM, tiey making it possible to reconfigure such
FPGAs dynamically.

As with any other semiconductor device, FPGAs are susdeptibradiation effects including single-
event upsets (SEUs) and permanent latch-up faults. Rediatird FPGAs are commercially avail-
able?, though they tend to have lower density, lower performanu significantly higher cost than
commercial grade devices. At the time of writing, both agoittes are in use in ongoing missions —
the Galileo/Huygens spacecraft incorporates a number t&fl Azdiation hardened FPGAs, whereas the
Mars Exploration Rover mission’s twin rovers, Spirit andg@punity, depend on COTS devices sourced
from Xilinx.

1.2 RADIATION DAMAGE

Radiation levels in space vary widely; in low earth orbivdls can be sufficiently low that conventional
electronics can be used unmodifieds spacecraft venture outside the protective effectsef&hrth’s
magnetic field, radiation levels increase both in terms efftaquency and energy of particle impacts.

Fig. 1 shows the effect of a heavy ion moving at a relativigéiocity (cosmic ray) passing through the
gate of a field effect transistor in a typical gate. The iovésaa trail of charge that transiently affects
the operation of the transistor, which may manifest as aramtwd voltage spike in the circuit. In many
cases, such spikes are benign and do not cause circuit beh&videviate from specification. Often,

however, such a spike, often referred to as a Single EvergtYf&U), may cause a circuit to enter an
invalid state. Normally, such conditions are detected bychdog circuits and are cleared by simply
resetting the malfunctioning subsystem.

Sufficiently high energy particle impacts can cause permiagi@mage. Often referred to as permanent
latch-up, such damage manifests as signals ceasing todortirrectly and appearing to be stuck per-
manently at logidrue or false.Such damage can not be cleared by a reset, so some form ofleetiyn

is required in order for the subsystem to continue to fumctio

1Largely due to launch costs of the order of approximately @30 per kg to low earth orbit.
2See alstt t p: / / www. act el . cont
30n the International Space Station (ISS), many computingtaskcarried out by COTS laptop PCs.

Gate

Copper

Source

Positive e / I
well i

Cosmic ray
(heavy ion)
track

Figure 1: SEU triggered by a cosmic ray impact

1.3 MODULAR REDUNDANCY

Traditionally, modular redundancy has been the standgrtbaph toward mitigating the effects of per-
manent latch-up. In this approach, majority voting logi8][&llows the incorrect output of one or more
faulty subsystems to be ignored. In 3-way modular redungésee Figs. 2 and 3), any two subsystems
can override the output of the third, allowing one subsystefail completely without affecting system
level behaviour. 5-way modular redundancy, as employed&yshuttle main computers, allows up to
two subsystems to fail without affecting functionality.

Modular redundancy is certainly effective, but its reqoisst for duplication of subsystems carries a
significant mass and power consumption penalty. Whilst ikidy to remain a requirement for critical
subsystems, its cost precludes its universal applicgbilit

1.4 EXPLOITING REDUNDANCY WITHIN FPGAS

For practical reasons, most FPGA layouts are typicallyricet] to using no more than approximately
60 — 80% of the chip’s theoretical optimal capacity. FPGAolatyis thought to be an NP-complete
problem, though good heuristics exist that can do a reaseial of automatically mapping designs
to configuration bit streams. These algorithms tend to reasblution much faster when the design
can be mapped to a relatively small proportion of the chig&urces, and can fail to generate a layout

Redundant
Subsystem

Redundant I o m

1

INput e—t——1 Subsystem | ,@ P Output
Redundant

Subsystem

Figure 2: Modular Redundancy

completely in cases where the proportion is close to 100%a éansequence of this, almost all practical
FPGA layouts contain a significant amount of unused ressurdbough FPGA circuits are not usually
in and of themselves redundant, spare FPGA logic capacitgathby the circuit can nevertheless be
exploited in order to improve reliability.

A tempting possibility would be resynthesising logic Idgalithin small areas of the chip, adding

redundancy to the circuit until the chip is completely fdlhis approach, however, would incur a power
and performance penalty, whilst adding redundancy to it&dno an unpredictable way, without any

guarantee that the resulting layout would in practice serany particular fault.

A more practical approach is to lay out the FPGA conventigntddenlocally resynthesistgic around
faults as and when they are detected (see Section 2.4). ¢iapare capacity in terms of unused logic
blocks and wiring resources spread across the chip layokéesia feasible to consider only a small
area near the fault, avoiding the need to generate a comp#etdayout from scratch. In outline, this
approach may be summarised as follows (see also Fig. 4):

FPGA running normally (Fig. 4.i)

Fault detected (Fig. 4.ii)

Take FPGA off line and put it through a test procedure ireotd localise the fault or faults
Locally resynthesise logic around each fault, resuliting working, work-around layout

Upload new configuration bit stream to FPGA

o g & w0 N PE

Put chip back on line (Fig. 4.iii)

Several alternatives are possible as regards the implatimnbf local resynthesis. Most obvious is
perhaps re-running the software responsible for the aldgiPGA layout again with appropriate con-
straints preventing it from using damaged parts of the chighitst technically feasible, this approach

Vsupply

a R
R
b | | +
Output
R _
¢ Voltage

Comparator

All resistor values are equal,
eg.R=1kQ

Ground (0V)
a }
Output
: D=
. C
i) }

Figure 3: Typical Majority Voting Logic Implementations: Analogue, ii. Digital

Undamaged FPGA

Cosmic ray (heavy ion)
impact permanently
damages logic resource

Functionality of damaged
resource implemented in
redundant, previously
unused logic by local
resynthesis

Note that the resulting
look up tables need not
resemble the original
versions — local resynthesis
does not just naively move
blocks and reroute wires

ii) g 2NN

Figure 4: Using available FPGA resources to work around paent latch-up damage

is not well suited to automated in-flight use, since the safenrequired typically assumes a powerful
workstation class computer, often with some human intéreen

Jason Lohn’s group at the NASA Ames Research Centre [8, 8 baperimented with automatically
generating FPGA layouts with genetic algorithms. A popatadf random FPGA bit streams are tested,
with their behaviour compared with ideal test traces dérivem the original circuit. Over many gen-
erations, functionality tends to converge on the desireclitj even though no formal link other than
observed behavior exists between the original design anddherated design. Good results have been
achieved on a number of test circuits, but the difficulty afying that a generated circuit that includes
flip flops really does implement the intended behaviour (gmepd to just happening to respond cor-
rectly to a non-exhaustive set of tests) is likely to limi technique’s applicability.

1.5 AVAILABILITY

An FPGA undergoing repair will, of necessity, not be abledataue performing its intended function
during the repair process. As a consequence, our techniitjumibe suitable for applications requiring
high availability unless the FPGA is itself part of a moduledundant subsystem. In such situations,
the ability to repair faulty subsystems is still a signifitadvantage, because it allows redundancy to be
maintained over far longer periods.

1.6 LOCAL RESYNTHESIS AS A SAT PROBLEM

In this paper, we describe a technique that can automatipatform local resynthesis whilst retaining
functionality that is formally identical to that of the onil circuit. In essence, formally correct local
resynthesis requires an alternative, work-around biastrs be determined such that for all possible in-
puts and/or internal states, the outputs and next intetaid of the work-around circuit matches exactly
that of the original circuit. Finding such configuration€@mputationally hard, perhaps prompting the
adoption by Lohn’s group of heuristic search algorithms tlwenot attempt to ensure formal correctness.

In the remainder of this paper, we demonstrate how locahtesgis can be transformed into a equivalent
SAT problem [3, 2, 1], thereby demonstrating that local nésgsis is no harder than NP-compfet€he
resulting SAT problems are suitable for attack by SAT sayevith solutions guaranteed to preserve
correctness with respect to the original circuit.

2 DEFINING THE SAT PROBLEM

Given an original, correct, bit streatnalong with a model of a correct FPGA a work-around bit
streamd’ for a faulty FPGAf’ must possess the following property:

Vi. f(b,i) < f'(b,i)

Informally, this states that for all possible inputsthe bit streant’ causes the damaged FPGA to
behave exactly identically to the original FPGA and bitaineg(see also Fig. 5). Lettifg represent any
potential work-around bit stream, this expression willleage totrue if and only if correct functionality

is preserved — in effect, the expression embodies formé#icagion of a work-around bit stream with
respect to an original bit stre&mAlternatively, the expression may be thought of as defimiBpolean
satisfiability problem whose solutions represent all gassivork-around bit streams — solving such a
SAT problem is therefore equivalent to the local resynthpsbblem.

After constant propagation, quantifier elimination andn@cessary) transformation to CNF or NNF
form, feeding the resulting expression to a SAT solver adloWwo be calculated.

It is noteworthy that no inherently complex conventionabpdayout, placement or routing algorithms
are required, suggesting that this functionality mightplemented within embedded systems carried

4We conjecture (assuming # N P) that no complete P space/time algorithm exists, though spetuation is beyond the
scope of this paper.

5Note that this approach may be used to verify the correctrieasyovork around bit stream, including those generated by
genetic algorithms or by other means.

Original bit stream b

(known)

FPGA Model f

(Undamaged)
true iff both FPGA

Input models have identical

outputs

FPGA Model f

(Damaged)

New bit stream b’
(to be determined)

Figure 5: FPGA Repair as a SAT Problem

on the spacecraft itself. Typical SAT solver memory requieats are generally not particularly severe
for the kinds of problem we consider, requiring approxirha8MB for the circuit shown in Fig. 6. Run
times are of the order of tens of seconds on contemporary CsdsSection 3, Fig. 7).

The SAT problems that result from this process are typiaglige hard, in the sense that standard SAT
solvers do not typically find solutions very quickly. Empailly, non-clausalSAT solvers (i.e. those
that do not require their formulas to be converted to CNF joappear to be most effective, possibly
because they allow circuits to be modeled in a form that isesl¢o their original structure.

2.1 QUANTIFIER ELIMINATION

SAT solvers typically do not directly support quantifiers tlse first step involves eliminating them from
the expression. Removing the universal quantifiés therefore essential. Sincenay consist of several
Boolean variables, it is helpful to (equivalently) expréss problem as

Viy Vig ... Vi . f(b,i) < f/(V,4)
We can now eliminate these quantifiers one by one by applyieggwrite rule
Va.F(a) — F(1)AF(0)

repeatedly until none remain. Since this operation has pression size and space upper boung’of
this restricts our technique’s applicability to fairly sireub-circuits, though this is less significant when
slicing techniques are adopted (see Section 2.2).

After constant folding and common subexpression elimamatthe resulting expression is a directed
acyclic graph, with exactly one ‘output’ node representimg result of the expression, and one ‘input’
node for each bit in’. The variables andb are no longer externally exposed, with the resulting
expression depending only updn At this point, the expression may be passed to a suitablesBAEr,
e.g. NNF-WALKSAT, as described in Appendix A.

2.2 S.ICING

Attempting to resynthesise a complete FPGA is infeasibta wiir method due to the tendency for the
size of the SAT problem to be proportional2d, whereN is the total number of inputs and flip flop
outputs (see Section 2.3). It is therefore necessary to work smallslice of the chip. The rationale
behind this approach is that, whilst a cosmic ray impact tnighder the original circuit useless, many
possible work-around bit streams with low Hamming distaftoen the original bit stream typically
exist, differing only near the damage site. Several va@ag@proaches are feasible:

1. Slicing by Coordinate.In this case, a slice is chosen such that inclusion is basquhgsical
distance (in terms of the 2D chip layout) from the damage site

2. Slicing by Connectivity.Such a slice might be generated by beginning at the damagarsit
including all bit stream bits that are electrically readeathrough a predetermined number of
logic blocks.

3. Slicing by Heuristic.In this case, a slice might be generated by some devicefspalgjorithm
capable of exploiting aspects of its design in order to er@amore effective slice than either of
the above simpler approaches.

It is possible that, in some cases, no local solution mayt,gxig solutions that differ more significantly
may still be possible. The probability that this might occan be reduced by arranging the original
design such that used resources are spread evenly acradsghather than clustered together, but in
extreme cases the fall back option still exists of creatinglernative layout manually (e.g. remotely
on Earth). Our experimental results suggest that locatisolsiare possible in most cases, however.

2.3 HANDLING FLIP FLOPS

The technique presented here essentially considers catidrial circuits; clocked synchronous circuits
may be accommodated by a small modification:

1. If aworking flip-flop necessary to implement the originiatuit falls within the slice under repair,
treat its output as if it was an externaput of the subcircuit. Similarly, treat its input as antput
of the subcircuit.

2. If adamaged flip-flop necessary to implement the origiimaud falls within the slice, exclude its
connections from the slice and substitute an alternatieeking flip flop. Local resynthesis will
take advantage of the alternative flip-flop and avoid the dgdariginal.

2.4 DETECTION AND L OCALISATION OF FAULTS

It is envisaged that faults will initially be detected as asequence of observably incorrect behaviour of
a subsystem implemented on an FPGA. Well known techniquesadl exist, such as watchdog circuits,

suicide/fratricide logic, etc. In a practical implemeidat when incorrect behaviour is detected, an
embedded proces$awill be triggered to begin a repair cycle.

Initially, the fault will only be known to exist somewheretWin a particular chip, but gate-level fault
information is required in order to allow a work around biesim to be generated. Most FPGASs support
in-circuit testing via the industry standard JTAG intedae this typically allows all flip flops to be
temporarily reconnected as a single shift register, aligvihe internal state of the chip to be uploaded
or downloaded. Assuming that the chip is not so badly damalgadits JTAG interface no longer
functions, uploading a series of test vectors and examithiag results potentially allows faults to be
localised with considerable accuracy. Such testing prnargesdare ubiquitously employed by automated
test equipment during chip manufacture, so this requir¢msamlikely to be prohibitive.

3 EXPERIMENTAL RESULTS

As a proof-of-concept, a small, FPGA-like circuit was mak(see Fig. 6). Eight inputs, split into two
groups of four, feed the inputs of four 16-bit look-up tabletiose outputs feed a fifth 16-bit look up
table. The model was configured by randomly generated ‘t#tsts’, each 80 bits long, mapping to
the configuring bits of the look up tables. Stuck-at faultsev@mulated by fixing the values of one or
more bits at 0 or 1. For simplicity, fixed wiring was assumedidh-clausal variant of the WALKSAT
algorithm [11] (see Appendix A) was used to solve the resglBAT problems.

6This could either be an on-chip CPU or an external, possiljation hardened, general purpose processor.

YYVYY

YYVYY

Inputs

Output

YYVYVY

YVYVYY

)
LJ0I0)
* 0

Lookup Table Bits
. Ne— zem
|:| Zero

() |§| One

Stuck at Zero
° Stuck at One

YYVYY

Figure 6: Example Test Circuit Model

In our experiments, the SAT problems were generated by afiaddiersion of the HarPE hardware
partial evaluator [16]. HarPE is a C++ template library [18&t allows circuits to be described in a
high-level language, then manipulated by partial evatuefs, 10, 9]. The library was extended slightly
to allow its output to be represented in the format necedsatypical SAT solvers.

Test runs were repeated with between 1 and 6 simulated f&ultstimes (C++gcc - O3, running on
a 1.6GHz Pentium IlI) and success rate are shown in Fig. 7ravkaccess’ was defined empirically as
the SAT solver finding a solution within 20 minutes

4 RELATED WORK

The original concept of generating FPGA bit streams with SAlvers is due to David Greaves at the
Computer Laboratory, University of Cambridge [4].

“Note that no attempt was made to verify whether the generatslgmns were actually soluble — this corresponds well to
reality, in that some damage sites in critical positions mayatiotv any possible work around configuration to be determined

. 80 100 o~

%)

o 70 80

£ 2

I‘—: 60 S w0

& 50 a

% X 40

o 40

= 30 20
2 3 4 5 6 2 3 4 5 6
Number of Stuck-at Faults Number of Stuck-at Faults

Figure 7: Test Results

The Dynamic Evolution for Fault Tolerance (ITSR/ES) projeeaded by Jason Lohn at the NASA
Ames Research Centre is applying genetic algorithms to FREpAIr [8, 7, 6]. This approach has been
shown to work, but suffers from the problem that its genefratecuits are not guaranteed to be formally
equivalent to the original.

Adrian Stoica’s group at JPL is working on the synthesis aphir of analogue field programmable
transistor array (FPTA) devices with genetic algorithni3][1

Toby Walsh’s group at the School of Computer Science andreeging, University of New South
Wales, Australia are working on non-clausal SAT solverss ofiwhich, NOCLAUSE, is due to be
released into the public domain shortly [14].

There is a huge amount of literature on the subject of SATiiquaarly with regard to resolution of
Boolean expressions in CNF form. The web gitet p: / / www. sat | i ve. or g/ is a widely-used
and very useful resource for information about SAT/QBF sdy

5 CONCLUSIONS

In this paper, we have described a method for restating tit#gem of finding an alternative work-around
FPGA configuration as a Boolean SAT problem, along with moaiifons to the WALKSAT algorithm
that allows solutions to the resulting problems to be fouffidiently. The feasibility of using SAT
solvers for FPGA repair has been empirically demonstrated.

6 FUTURE WORK

The approach described in this paper assumes an underlgioked synchronous model. We hope
to apply similar techniques to the synthesis and manimriadf a wider class of circuits whose dy-
namic characteristics are critical, e.g. self-timed discand globally asynchronous locally synchronous
(GALS) circuits.

In recent papers [17, 15], we describe a multi-value logit ificapable of reasoning about asynchronous
circuits, and also about such circuits’ behaviour in resgdin SEUs and permanent latch up faults. An

approach, similar to that described in this paper, but ugimgnore accurate logics may make it feasible

to automatically repair FPGA-based circuits whose asyorobuis behaviour is more critical than those

relying upon the synchronous model assumed here.

Our finding that non-clausal SAT solvers appear to work bétteFPGA synthesis has also been noted
by Greaves [4]. Finding out exactly why this is the case mawdeful both within our own problem
domain and also in the wider SAT solver community.

The Boolean SAT expression necessary for local resyntloasislso be used to check the validity of
solutions that have been arrived at by other means, indutiiose generated by genetic algorithms, so
it is possible that a combined approach may offer furtheebitn

7 ACKNOWLEDGEMENTS

This work was supported by the NASA Ames Summer Internshig@mme, managed by MCT/QSS
for NASA during the summer of 2004. Discussions with memiloétbe Automated Software Engineer-
ing group at Ames, particularly Arnaud Venet, GuillaumetB@orina Pasarenau and Mike Lowry, and
with the Jason Lohn and Gregory Larchev of the Genetic Atgors group were gratefully appreciated.
The first author wishes to thank NASA, MCT, QSS, Intel Rede&ambridge, EPSRC, Big Hand Ltd.

and St Edmund’s College for financially supporting this work

10

A NON-CLAUSAL SAT SOLVER

An NNF-compliant SAT solver was implemented as a C++ libfanthe purposes of supporting exper-
imentation on this project.

NNF-GSAT Initially, the relatively simple GSAT algorithm [12] was apted. Though originally
intended for use with CNF problems, it was relatively sthéfigrward to adapt the algorithm for use
with NNF. In outline, the algorithm works as follows:

1. Initialise the variables to random initial values

2. Checkto see whether the current variable values salisfgtpression completely. If so, a solution
has been found, so the loop terminates.

3. For each variable, flip its state (i.e. charfgéo 1 and vice-versa), then note the number of
subexpressions that agatisfied(i.e. evaluate td) as a consequence. Return each variable to its
initial state after each count.

4. Choose the variable that most increases the number sfisdtsubexpressions, then flip it perma-
nently.

5. If a predetermined number of attempts has been exceeddaol to step 1, otherwise go to step
2.

In practice, this algorithm is a little too simplistic, aretuires some extra heuristics in order to prevent
it from becoming trivially stuck in local minima. Initial selts indicated that, though slow, GSAT was
actually surprisingly effective, given its extreme sinafily.

NNF-WALKSAT In order to improve upon the performance of NNF-GSAT, the W&AT algo-
rithm [11] was similarly adapted for use with NNF. The basiBM{SAT algorithm may be summarised
as follows:

1. Choose a clause at random that is currently unsatisfied

2. Depending on whether a random number exceeds the che@nparameter, either:

(a) Randomly choose a variable that appears within the eland flip it, or

(b) Attempt flipping each variable that appears within treusk in turn, noting the number of
unsatisfied clauses that result in each case, then choosadlfkp that results in the lowest
number of unsatisfied clauses. This is referred to her@inaft agreedy flip.

WALKSAT is superficially similar to GSAT, but due to the need @ach iteration only to enumerate the
variables within a single clause rather than all unboundhtiées in the entire expression, it is generally
much faster whilst retaining roughly equivalent power. AHWGSAT, the basic WALKSAT algorithm
is intended for use with expressions in CNF, so it was necgss@xtend and modify it to deal with the
more general NNF case.

The resulting SAT solver, is able to solve the majority of test cases rapidly, even where multiple
stuck-at faults were simulated. The basic WALKSAT algarithequired some modifications and extra
heuristics, due to a bad tendency to get stuck in local minifine extensions we used are summarised
as follows:

Supporting terms as well as clausesn an expression in CNF, one single outemmencapsulates pos-
sibly many clauses, and clauses may only contain variabléisetr negations, not terms. NNF
relaxes this somewhat, in that terms may contain clausesieed/ersa, with the only significant
restriction in comparison with general Boolean expressioging the requirement that negation
may only appear adjacent to a variable.

11

In NNF-WALKSAT, we perform a preprocessing stage, whereujoo each term and each clause,
the list of variables contained within them is cached. Magda that appear directly within a term
are regarded as equivalent to singleton clauses containilyghat variable.

Pre-optimisation of the NNF expressionA simple pre-optimisation pass is performed first, such that
clauses that are of the formv —a vV bV ... are replaced withrue, terms of the formu A —a A
bA... are replaced witlfalse, then any remaining constants are evaluated out and foldedhe
expression.

Giving clauses close to the root preferenc&Vhen randomly selecting a clause, preference is given to
clauses that appear close to the root of the expressiondrethie basis that such variables are
more likely to have a wide impact, so it is appropriate to tryrtake an estimate of their value
early.

Super-flips We add a third kind of flip, in addition to random flips and grgdlibs. A super-flip
requires trying all possible combinations of variablegntselecting the combination resulting in
the best score. Since this algorithm has a complexity @), it makes sense to set a fairly low
upper limit on the number of variables to which it can be ap# in our current implementation,
super-flips are only attempted for clauses with 8 variabtdess.

Super-flips do not appear to make a big difference to manyl@nod but in some cases they
appear to make it possible to find a solution quickly when thadard algorithm gets stuck for a
long time, even when the probability of performing a supigrii very small. A useful heuristic
appears to be to have the probabilifis of performing a super-flip, wherg is an empirically-
derived constafit

Dynamic control of the heat parameter The original WALKSAT algorithm suggests choosing between
random and greedy flips with a probability of approximately. Our finding was that this does
not work for expressions in NNF — though random flips are dsador avoiding local minima,
they often significantly increase the number of unsatisfladses in the expression as a whole.
We found that a random flip probability in the ran@61..0.1 normally works, but found that the
ideal value was highly dependent on the expression beingdollf the probability is too low,
the solver gets stuck in local minima, but if it is too highe thigorithm does not converge on a
solution at all.

Our implementation dynamically varies the heat in accocdamith the following heuristics:

1. If the most recent flip reduced the number of unsatisfiedsels, reduce the heat exponen-
tially.

2. Ifthe same variable is flipped twice in succession, sufiggethat a local minimum has been
encountered, increase the heat by a (fairly large) constant

3. Otherwise, very gradually move the heat toward a defanig{l) value (.001 in our imple-
mentation).

This approach works well for most of the SAT problems we hawwréned — early in the run, the
heat is kept very low by rule 1, which makes it possible to evge quickly on a possible result.
In many cases, a solution will fall out of this initial attetipymediately. However, if the SAT
solver gets stuck in a local minimum, this frequently resiftthe same variable being toggled
repeatedly — rule 2 picks up on this, increasing the heatglblyepushing the variable bindings
away from the minimum.

Retries Whenever a set of variable bindings is found that results imgomovement to the number of
unsatisfied clauses, a snapshot of these bindings is tak&tdouse. If no improvement beyond
this snapshot is seen for a predetermined number of atté@(e in our implementation), the last
shapshot reverted to, giving the search procedure andtteenat at finding an improved result.
In a significant proportion of cases, this leads to a solutieimg found after a small number of
retries.

80ur implementation usgs= 1.

12

Restarts If retrying does not succeed after a large number of atteii®pits our implementation), this

generally means that the solver is stuck in a local minimuaw itrcan not climb out of by normal
means. In this case, we reset the variable bindings to new|ated values then start again. By
experimentation, it was found that determining these waceording to the following algorithm
is beneficial:

1. Initially, set all variables to O

2. On the first restart, set all variables by counting the remdf times that each appears
negated and non-negated, choosing a value likely to salisfgreatest number of clauses in
each case

3. On the second restart, set all variables to 1
4. On all subsequent restarts, set all variables randomly

This can be visualised as initially trying one extreme ofpitheblem space, then a case roughly in
the middle of the problem space, then the other extreme,tamdfinally trying cases at random
until a solution is found.

This approach works well as a general purpose SAT solvémwadth in our application we find
it beneficial to first attempt an initial variable set initgdd to the existing FPGA bit stream — in
many cases, this proves to be a considerable speedup, alsitsincreasing the percentage of
successful runs.

BIBLIOGRAPHY

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

CooK, S. The complexity of theorem proving proceduresPiac. 3rd Annual ACM Symposium
on Theory of Computinl971), pp. 151-158.

Davis, M., LOGEMANN, G., AND LOVELAND, D. A machine program for theorem proving.
Communications of the ACM 3 (July 1962), 394-397.

Davis, M., AND PUTNAM, H. A computing procedure for quantification theodpurnal of the
ACM 7, 3 (July 1960), 201-215.

GREAVES, D. J. Direct synthesis of logic using a SAT solver. Unpuidid research note, available
at http://www.cl.cam.ac.uk/users/djg/wwwhpr/dslogtml, 2004.

JONES, N., GOMARD, C.,AND SESTOFT, P. Partial Evaluation and Automatic Program Gener-
ation. Englewood Cliffs, NJ: Prentice Hall, 1993.

LARCHEV, G.,AND LOHN, J. D. Hardware-in-the-loop evolution of a 3-bit multiglien Proc.
12th Annual IEEE Symposium on Field Programmable Custompdting Machines, FCCM-2004
(2004), pp. 277-278.

LOHN, J. D., LARCHEYV, G.,AND DEMARA, R. F. Evolutionary fault recovery in a Virtex FPGA
using a representation that incorporates routing?rioc. IPDPS 20032003).

LOHN, J. D., LARCHEV, G., AND DEMARA, R. F. A genetic representation for evolutionary
fault recovery in Virtex FPGAs. IiProc. ICES 20032003), pp. 47-56.

LOMBARDI, L. Incremental computation. lAdvances in Computers, vol. B. Alt and M. Rubi-
noff, Eds. New York: Academic Press, 1967, pp. 247-333.

LoMBARDI, L., AND RAPHAEL, B. Lisp as the language for an incremental computerTHa
Programming Language Lisp: Its Operation and Applicati¢h@64), E. Berkeley and D. Bobrow,
Eds., Cambridge, MA: MIT Press, pp. 204-219.

SELMAN, B., KAuTz, H., AND COHEN, B. Noise strategies for improving local search Piroc.
12th National Conference on Atrtificial Intelligence, AA®’'(1994), vol. 1, MIT Press, pp. 337—
343.

13

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

SELMAN, B., LEVESQUE H. J.,AND MITCHELL, D. A new method for solving hard satisfiability
problems. InProc. 10th National Conference on Artifical IntelligencéA’92 (1992), pp. 440—
446.

SToICA, A., ARSLAN, T., KEYMEULEN, D., DUONG, V., Guo, X., ZEBULUM, R., FERGU-
SON, |., AND DAUD, T. Evolutionary recovery of electronic circuits from ration induced faults.
In Proc. IEEE Conference on Evolutionary Computat{@004), CEC.

THIFFAULT, C., BaCcCHUS, F.,AND WALSH, T. Solving non-clausal formulas with DPLL search.
In 10th International Conference on Principles and PractideGonstraint Programming (CP-
2004)(2004), vol. 3258 ot ecture Notes in Computer Scien&pringer-Verlag.

THOMPSON, S., AND MYCROFT, A. Abstract interpretation of combinational asynchromou
circuits. In11th International Static Analysis Symposium (SAS{@004), R. Giacobazzi, Ed.,
vol. 3148 ofLecture Notes in Computer Scien&pringer-Verlag, pp. 181-196.

THOMPSON S., AND MYCROFT, A. Bit-level partial evaluation of synchronous circuit$n
preparation, draft available at http://findatlantis.cowpapers/, 2004.

THOMPSON S.,AND MYCROFT, A. Sliding window logic simulation. 1ri1.5th UK Asynchronous
Forum (2004), Cambridge.

VELDHUIZEN, T. Using C++ template metaprogram&€++ Report 7, 4 (May 1995), 36-43.
Reprinted in C++ Gems, ed. Stanley Lippman.

VON NEUMANN, J. Probabilistic logics and the synthesis of reliable oigras from unreliable
componentsAutomata Studiefl956), 43-98.

14

